
1. WHAT IS A SCANNING ASTROMETRIC SPACE-
CRAFT?

• Space-based platform for making precise astrometric meas-
urements (e.g., Hipparcos, FAME).

• Platform is spin-stabilized (and therefore much less expen-
sive).

• Telescope(s) point orthogonal to the spin axis, scanning a
strip of the sky one field of view (FOV) in width over the
course of one spin period (tens of minutes).

• Precession of the spin axis (around, say, the Sun direction)
produces a wide, spirograph-like scan pattern on the sky
whose width is twice the precession cone angle .  See Fig-✫
ure 1.  The precession period (days) is much longer than the
spin period.

• Earth orbital motion causes the spirograph-like scan pattern
to slowly rotate (rotation axis through the ecliptic poles),
producing full-sky coverage.

• This basic scanning geometry will have a fundamental
impact on mission-averaged astrometric accuracies.

2. WHAT DETERMINES MISSION ACCURACIES?

• Broadly speaking, we have "global" and "local" effects to
consider regarding mission-averaged astrometric accuracies
(see Figure 2).

• Local

• instrumental parameters and characteristics

• detailed spin and orbit dynamical motions

• this category contains all the physics

• determines single-measurement accuracies

• Global

• driven entirely by the scanning geometry

• constrains two fundamental distributions

distribution of observation density (a function of po-
sition on the sky)

distribution of scan angles (also a function of sky po-
sition)

scan angle: at a given point on the sky, the angle
that the telescope FOV motion makes with respect
to an ecliptic meridian through that point.

• Sets upper bounds on the mission-averaged accuracies
that the instrument can achieve, given 

the instrument geometry and

a statistical description of the single-measurement er-
rors.
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Figure 1 — Scanning motions of a scanning astrometric satellite with two
telescope viewports.
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• This paper is concerned with the constraints on mission
accuracies produced by the scanning geometry.

3. GEOMETRY

Some basic geometry appropriate to the problem.  First we
relate a spacecraft “body frame” , which is fixed to and[x, y, z]
spins along with the spacecraft, to an “external frame” 

 with linkage provided by a convenient set of Euler[X, Y, Z],
angles.  See Figure 3 for an illustration and definitions.  The

external frame need not be inertial.  From this, one can con-
struct the spherical triangles illustrated in Figure 4.

• The Euler angles are functions of time, derived from (and
specified by) the spacecraft rigid body dynamics.  We will
assume these functions are given.

• Ecliptic coordinates of the viewports, as a function of the
Euler angles (and therefore time):

sin✎ = −sin✩ sin✕ + cos✩ cos ✕ cos✫
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Figure 2 — Mission errors are determined by (1) single-measurement errors, a local effect, and (2) the scan geometry, a global constraint.  Numbers given are
for FAME.
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Figure 3 — The body frame  and the external frame , con-[x, y, z] [X, Y, Z]
nected by the Euler angles .  The “fast” angle, or spin phase, is ;  the[✕,✫,✩] ✕
precession phase is ; and the precession cone angle, or nominal Sun angle, is ✩

.  Two telescope viewports, whose directions define an “observation plane”,✫
are separated by the “basic angle”, .  Viewport 1 points along the body y axis.✏
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Figure 4 — Spherical geometry of the two viewports and the symmetry axis
spin vector, in the ecliptic coordinate frame.
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cos ✘ =
cos ✕ sin✫ cos✘? + (sin ✕ cos✩ + cos ✕ sin✩ cos✫) sin✘?

1 − (cos✩ cos✕ cos✫ − sin✩ sin✕)2

sin✘ =
cos ✕ sin✫ sin✘? − (sin ✕ cos✩ + cos ✕ sin✩ cos✫) cos ✘?

1 − (cos✩ cos ✕ cos✫ − sin✩ sin✕)2

where  is the ecliptic longitude of the Sun.  For viewport 2✘?
(the trailing viewport), substitute  for .✕ − ✏ ✕

• Using these, one can numerically build up the distribution
of observations on the sky.

• The scan angle is

cos q = −
(cos& cos✕ cos✫ − sin& sin ✕) sin ✕ + sin&

1 − (cos& cos ✕ cos✫ − sin& sin ✕)2 sin✕

sin q =
cos& sin✫

1 − (cos& cos✕ cos✫ − sin& sin ✕)2

• One can also obtain from the geometry the scan angle as a
function of ecliptic coordinates:

sin q = Q

cos q =
[sin2(✘ − ✘? ) − cos2(✘ − ✘? ) sin2✎] cos✫

sin(✘ − ✘? )[1 − cos2(✘ − ✘? ) cos2✎]

+
[cos2(✘ − ✘? ) − sin2✫] cos(✘ − ✘? ) sin ✎
Q sin(✘ − ✘? )[1 − cos2(✘ − ✘? ) cos2✎]

where Q is the pair of quadratic solutions

Q =
cos(✘ − ✘? ) cos✫ sin ✎
1 − cos2(✘ − ✘? ) cos2✎

!
sin(✘ − ✘?) sin2✫ − cos2(✘ − ✘? ) cos2✎

1 − cos2(✘ − ✘? ) cos2✎

• We see that, given a star at a position  relative to(✘ − ✘?, ✎)
the Sun, then for a precession cone angle  one can vary the✫
spin phase  and the precession phase  until the star is in✕ ✩
the field of view of viewport 1 (and likewise for viewport
2).  This will in general occur for two values of , with(✕,✩)
two corresponding values of scan angle q.

• For each set of values  and , there will be a region of✫ ✘?
the sky that is visible, corresponding to a  range of the2✜
precession and spin phase angles.  The boundaries of this al-
lowed region are determined by the locations where the
square root term in Q becomes imaginary.  There are two
resulting inaccessible “holes” in the Sun and anti-Sun
directions, corresponding to the boundaries of the preces-
sion cone.  The angular radius of the holes, from simple ge-
ometry, is , which may also be seen by setting ✜

2 −✫ ✘ = ✘?
in  from the square root term,sin2✫ − cos2(✘ − ✘? ) cos2✎
leaving .✜

2 − ✎ = !✫
• Figure 5 shows, on a sinusoidal projection of the sky, the

value of the square root term as a function of  and ✎
, for , and with black representing zero.✁✘ = ✘ − ✘? ✫ = ✜

4

The red circles are the boundaries of the precession cone
holes.

• The precession cone holes occupy a solid angle that is a
function of the precession cone angle.  Consider an infini-
tesimal solid angle element , where d✡ = sin u du d✩

 is the polar angle.  Integrating over  and u = ✜
2 −✫ ✩ = 0..2✜

, we obtain the solid angle occupied by the twou = 0.. ✜2 −✫
holes,

(1)
✡holes

4✜ = 1 − sin✫

• Figure 6 illustrates the scan angle as a function of ecliptic
latitude and difference in ecliptic longitude from that of the
Sun, for a precession cone angle of 45 degrees.  Again, a si-
nusoidal map projection in  is used.  The blue and(✁✘,✎)
yellow surfaces correspond to the two solutions.  The holes
due to the precession cone in the Sun and anti-Sun direc-
tions, shown in black, are readily apparent.  

• The faux discontinuities near  and ✁✘ j !130 deg
 are merely due to wrapping of q from -180✁✘ j !40 deg

to 180 degrees.  There are real discontinuities at 
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Figure 5 — Square root term of Q as a function of position on the sky rela-
tive to the Sun.  Black regions correspond to precession cone holes, the
boundaries of which are indicated by the red curves.  Map projection is a sinu-
soidal equal-area projection.

Figure 6 — FAME scan angle as a function of position on the sky relative to
the Sun.  Map projection is a sinusoidal equal-area projection.



.  The two solutions become identical at the dis-✁✘ = 0,✜
continuities (note in the figure the continuation of con-
tour lines across the discontinuities).  Hence, the surfaces
match across the discontinuities to produce two continu-
ous smoothly deformed sheets (except precisely at the in-
finitesimal discontinuities).  

• The effect of decreasing the precession cone angle is to
increase the radius of the precession cone holes by the
same amount and to increase the fraction of the sky cov-
ered by the holes

• The structure in Figure 6 will smear in longitude due to
Earth's orbital motion — but not in latitude.

4. THE IMPORTANCE OF THE CROSS-SCAN ROTATION
RATE

• Rotations of the spacecraft result in star motions at the focal
plane in the scan and cross-scan directions, as well as in
field rotation.  The two viewports will see different propor-
tions of these motions, due to their separation by the basic
angle .  By definition, the body y axis pierces the center of✏
the viewport 1 field of view.  Hence, for viewport 1 we have

and , where  are the✡x =✡c,✡y ====✡ r, ✡z ====✡s [✡c,✡r,✡s ]
cross-scan, field rotation, and in-scan rotation rates.

• Decompose the angular velocity vector along these three
axes.

• As functions of ecliptic coordinates, these rotation rate com-
ponents are:

Cross-scan rate:

✡c =
cos(✘ − ✘? ) cos ✎

sin✫
d
dt✫

+
[Q cos2✎ cos(✘ − ✘? ) cos✫ − sin2✫ sin✎] sin(✘ − ✘? )

Q sin✎ − cos✫ cos(✘ − ✘? )
d
dt &

+
Q2 cos2✫ cos(✘ − ✘? ) sin(✘ − ✘? ) cos3✎

sin2✫ [Q sin✎ − cos✫ cos(✘ − ✘? )]

−
Q cos✫ sin ✎ sin(✘ − ✘? )

Q sin ✎ − cos✫ cos(✘ − ✘? )

+
cos✫ cos2(✘ − ✘? ) − Q sin✎ cos(✘ − ✘? )

sin(✘ − ✘? ) sin2✫
cos ✎ d

dt ✘?

Field rotation rate:

✡r = cos(✘ − ✘? ) cos✎
d&
dt + sin✎

d✘?
dt

+
[sin2✫ sin✎ − Q cos2✎ cos(✘ − ✘? ) cos✫] sin(✘ − ✘? )

sin✫ [Q sin ✎ − cos✫ cos(✘ − ✘? )]
d✫
dt

In-scan rate:

✡s = d✕
dt +

d&
dt cos✫ − Q cos ✎

d✘?
dt

• Figure 7 shows the field rotation rate (the signal is domi-
nated by the precession term).  The specific case of FAME
is used for illustration.

• Figure 8 shows the cross-scan rotation rate (the signal is
again dominated by the precession term) for the same nu-
merical case.

• The cross-scan rate determines the density of observa-
tions on the sky.  From Figure 8:

• Expect a pile-up of density near the precession cone hole
boundaries (cross-scan rate approaches zero).

• The structure shown will smear in longitude due to
Earth's orbital motion.

• There are two zones in latitude where the density is maxi-
mum.  There will be a depression of mean astrometric er-
rors in these zones.
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Figure 8 — FAME cross-scan rotation rate due to precession, in units of
hundredths of arc seconds per second, as a function of position on the sky rela-
tive to the Sun.  Map projection is a sinusoidal equal-area projection.

Figure 7 — FAME field rotation rate due to precession, in units of hun-
dredths of arc seconds per second, as a function of position on the sky relative
to the Sun.  Map projection is a sinusoidal equal-area projection.



• The high-density zones move to higher latitude with
smaller Sun angle.

• We are now in a position to simulate observations and
understand the geometric causes of the results.

5. SIMULATION DETAILS

• Observations with single-measurement errors drawn from a
distribution were accumulated on an equal-area grid on the
sky as the spacecraft was allowed to spin and precess.
Nominal FAME values were adopted.

• 1-  scan-direction single-measurement error = 580 µas. This✤

sets the units for the results: µas for parallax and position,
and µas/yr for proper motions.  Sampled from Gaussian er-
ror distribution.

• grid = [341,171], evenly spaced in [longitude, sin latitude]

•  = amount of time to scan across one grid cell at equator✁t
in longitude direction

• determined by the grid size specification and the spin pe-
riod

• spin periods: 35, 40, and 45 minutes

• precession periods: 15, 20, and 30 days

• precession cone angles: 35, 40, and 45 deg

• simulation times: 2.5 years (nominal) and 5 years (extend-
ed)

• 2 viewports (telescopes)

• basic angle = 81.5 deg

• Observations were performed by between 1 and 4 detectors
per viewport passage. The number of detectors corresponds
to the number of astrometric CCDs in one of the 9 CCD col-
umns on the focal plane. The column was chosen randomly
for each focal plane crossing of a grid cell.

• astrometric CCD count by column: 123242321 (nominal
FAME configuration).

• An option for calculating normal points was available for
multiple CCD encounters per focal plane crossing.

• Least squares solutions for the astrometric parameters and
their errors were performed for each grid cell.

• Sun-tracking variation of Sun angle (~4°) not included.

6. SIMULATION RESULTS

6.1. Scan Angle Distribution Snapshots

• The observations shown in Figure 9 illustrate the distribu-
tions of scan angle from representative locations on the sky
(plot scale is milliarcseconds).

• At high ecliptic latitude, the scan angle distribution is
uniform, which will lead to better astrometric accuracies.

• At lower latitudes, the scan angle distribution becomes
nonuniform.  

• The limiting case is at the ecliptic.  The cone angle is de-
termined by the precession cone angle.

6.2. Observation Geometry and Least Squares

Refer to Figure 10.  The instrument makes an observation of
a star, deriving  and  (scan and cross-scan positions) with✁S ✁C
respect to local ecliptic coordinates  located on the sky[✁✘,✁✎]
at .  Scan direction is indicated, making an angle q[✘ref, ✎ref ]
wrt the local ecliptic meridian (  axis). The observation point✁✎
is not coincident with the star due to single-measurement er-
rors.

Measurement errors are in general orders of magnitude
worse cross-scan than in-scan, causing the measurement error
ellipse to be extremely elongated.  We therefore approximate it
as the limiting case: an "observation line".  (Note that  is✁C
not drawn to scale in the figure.)  Given a number of observa-
tions, the distance y of the observation lines from the true loca-
tion of the star then becomes the most natural quantity to mini-
mize in a least squares sense.

Due to Earth's orbital motion, the star moves on an ellipse
on the sky, with semimajor axis a and eccentricity .  Duecos ✎
to proper motion , the center of the ellipse moves dur-[✙✘,✙✎ ]
ing the mission.  The least squares algorithm minimizes the
length of the perpendicular line segment y by solving for the
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Figure 9 — Scatter plots of observations selected from three representative locations on the sky.  Left: high ecliptic latitude.  Center: mid-latitude.  Right: low
latitude.  Plot scale is milliarcseconds.



astrometric parameters: (1) the position  of the el-[✁✘0,✁✎0 ]
lipse center at epoch , (2) the proper motion components t0

, and (3) the semimajor axis a of the parallactic ellipse.[✙✘,✙✎ ]
The resulting covariance matrix then yields the formal errors
and cross-correlations of the parameters.

The perpendicular distance is

y j x ✁S
− a [sin(✘ref − ✘? ) sin q + sin✎ref cos(✘ref − ✘? ) cos q]

+ [✁✎0 + (t − t0 )✙✎ ] cos q − [✁✘0 + (t − t0 )✙✘ ] sin q x

6.3. General Characteristics of the Two Distributions

• Observation density distribution (Figure 11)

• Highest density at top & bottom of precession cone holes
(which smear in longitude), corresponding to two zones
in latitude .✎ = ✜2 −✫

• Lowest densities are in ecliptic band between the high-
density zones.

• Ecliptic band exhibits density "ribbing" corresponding to
the times when the spacecraft spin axis lies in ecliptic
plane.

Best accuracies should be in the mid-latitude high-
density zones.

Worst accuracies should be in the ecliptic band.

Ecliptic band is not uniformly bad.

• Scan angle distribution

• Homogeneous in polar cap regions (latitudes above high-
density zones)

• Cone-shaped on ecliptic, with cone opening angle .✜
2 −✫

Better position accuracies in polar cap regions.

Longitude position accuracy substantially degraded
near ecliptic.
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Figure 12 — Parallax errors (log scaling).

Figure 13 — Longitude errors (linear scaling).

Figure 14 — Latitude errors (linear scaling).

Figure 10 — Observation geometry used to estimate astrometric parameters
via linear least squares.
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Latitude position accuracy slightly degraded near
ecliptic.

Better parallax accuracy in polar cap regions.

6.4. Error Distributions on the Sky

• The structure of the mission-averaged astrometric error dis-
tributions is similar to that of the observation density distri-
bution.  See Figures 12-14.

6.5. Histogram Components and Behavior

• See Figure 15.

• sky naturally divided by scanning geometry into distinct re-
gions:

• high-density troughs at ✎ = ✜2 −✫

• ecliptic band ✎ < ✜2 −✫

• polar caps ✎ > ✜2 −✫

• as Sun angle decreases:

• polar caps shrink

• ecliptic band grows

• longitude

high-accuracy population shrinks, moves left

low-accuracy population grows, moves right

• latitude

distribution broadens and peak moves left

• parallax

main feature shrinks, moves left

poor-accuracy fraction grows

6.6. Variation of Precession Cone Angle

• Three cases were run with precession cone angles (i.e.,
nominal Sun angles) of 35, 40, and 45 degrees. See Figures
16-28.

• Larger than 45 degrees runs into trouble with shield size
(hardware complexity and cost, in addition to increase of
perturbations). Smaller than 35 degrees and we won't meet
the mission requirements.

• In general, the mission astrometric errors degrade as the
nominal Sun angle decreases.

• We do very well in latitude errors: histogram peaks are
around 26-28 µas, and 100 percent of the sky is better than
37 µas even for the worst case. Hence, with respect to lati-
tude errors, mission requirements are not affected by nomi-
nal Sun angle in the range 35-45 degrees.

• Nearly 100 percent of the sky is 50 µas or better in both
longitude (99.99%) and parallax (98.1%) for the 45 degree
case. Going to 40 degrees costs us about 18 percent of the
sky at 50 µas in parallax, and it costs about 14 percent of
the sky at 50 µas in position in longitude. At 35 degrees

nominal Sun angle the requirement of 90 percent of the sky
at 50 µas or better is not met.

• However, even at 35 degrees, the worst parallax error is
only 69 µas and the worst longitude error is only 67 µas.

• Proper motion in longitude significantly fails the 90 percent
of the sky, <50 µas/yr target for all three precession cone
angles.

• The parallax requirement of 90 percent of the sky better
than 50 µas restricts the precession cone angle to greater
than or equal to 43 degrees.

• Ratios of errors in the ecliptic region to those in the polar
regions get substantially worse for longitude and parallax as
you decrease the nominal Sun angle from 45 degrees to 35
degrees (see the plot of median values by latitude, shown in
Figure 28). The corresponding ratios get slightly better for
errors in latitude, but the difference is so small as to not
matter.

• The observation count is roughly in the range 600-1000 for
most areas of the sky. The dominant histogram peak shifts
towards lower counts as the precession cone angle
decreases.

• A test was run during which normal points were simulated
whenever more than one CCD was encountered during a fo-
cal plane crossing. In such cases, the weight of the observa-
tion was proportional to the number of CCDs in the given
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Figure 15 — Histograms of the observation density, parallax, and position dis-
tributions, showing components from three regions on the sky.
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Figure 16 — Histograms of observation counts (fraction in each bin).

Error bars are 1 , assuming Poisson statistics for each bin.✤
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Figure 17 — Cumulative histograms of observation counts.
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Figure 21 — Cumulative histograms of longitude errors.
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Figure 20 — Histograms of longitude errors.
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Figure 19 — Cumulative histograms of parallax errors.
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Figure 18 — Histograms of parallax errors.
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Figure 22 — Histograms of latitude errors (fraction in each bin).  Error
bars are 1 , assuming Poisson statistics for each bin.✤
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Figure 23 — Cumulative histograms of latitude errors.
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Figure 27 — Cumulative histograms of latitude pm errors.
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Figure 26 — Histograms of latitude proper motion errors.
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Figure 25 — Cumulative histograms of longitude pm errors.
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Figure 24 — Histograms of longitude proper motion errors.
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column. There was almost no difference in the resulting as-
trometric error distributions.

• Table 1 shows percentages of the sky for which a 2.5 year
FAME mission can meet or do better than the goals of 50
µas (position, parallax) and 50 µas/yr (proper motion), for
three nominal Sun angles and assuming a 580 µas single-
measurement standard error.

100100100pm-latitude

334354pm-longitude

100100100latitude

5886100longitude

657998parallax

35 deg40 deg45 deg

Table 1

• Table 2 shows minimum, median, average, and maximum
values from the simulations. Units are µas and µas/yr.

6.7. Variation of Spin Period

• Three cases were run with spin periods of 35, 40, and 45
minutes. See Figures 29-31 (left column of next page).

• There is almost no discernible difference in the structure of
the observation density distribution as the spin period
changes, at least in the range 35 to 45 minutes. The density
scales uniformly as a function of the spin period.

• In general, the mission astrometric errors degrade as the
spin period increases.

• Proper motion in longitude significantly fails the 90 percent
of the sky, <50 µas/yr target for all three spin periods.

• The parallax requirement of 90 percent of the sky better
than 50 µas restricts the spin period to less than or equal to
43 minutes.

• Table 3 shows percentages of the sky for which a 2.5 year
FAME mission can meet or do better than the goals of 50
µas (position, parallax) and 50 µas/yr (proper motion), for
three spin periods (35, 40, and 45 minutes), nominal Sun
angle of 45 degrees, and assuming a 580 µas single-
measurement standard error.

98100100pm-latitude

485462pm-longitude

100100100latitude

98100100longitude

8698100parallax

45 min40 min35 min

Table 3

SCANNING GEOMETRY BOUNDS ON ASTROMETRIC ERRORS 10 of 13

Figure 28 —Medians of longitude bands as a function of ecliptic latitude.
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51.136.636.125.65337.637.324.353.638.938.727.5pm-latitude

94.158.964.218.4825255.419.173.246.947.920pm-longitude

35.226.225.918.637.726.926.820.137.827.927.819.1latitude

67.142.846.814.16037.839.915.351.5343515.4longitude

68.541.140.320.761.438.135.922.45536.133.823.4parallax

2,3628547623922,0548547993701,959854808430counts

maxavgmedminmaxavgmedminmaxavgmedmin

35 degrees40 degrees45 degrees

Table 2
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Figure 29 — Histograms of parallax errors (fraction in each bin).  Er-
ror bars are 1 , assuming Poisson statistics for each bin.✤
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Figure 32 — Histograms of parallax errors.
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Figure 34 — Histograms of latitude errors.
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Figure 31 — Histograms of latitude errors.
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Figure 33 — Histograms of longitude errors.
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Figure 30 — Histograms of longitude errors.
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• Table 4 shows minimum, median, average, and maximum
values for spin periods of 35, 40, and 45 minutes. Units are
µas and µas/yr. Precession cone angle is 45 degrees.

6.8. Variation of Precession Period

• Three cases were run with precession periods of 15, 20, and
30 days. See Figures 32-34 (right column of previous page).

• The structure of the observation density distribution on the
sky is sensitive to the precession period. Coverage is more
uniform for smaller precession periods.

• However, there is almost no difference in the mission as-
trometric errors for precession periods in the range 15 to 30
days.

• Results begin to deteriorate around 30 days, which therefore
probably represents a reasonable upper bound on the pre-
cession period.

6.9. A 5-Year Extended Mission

• The nominal mission was run but with an extended mission
length of 5 years. See Figures 35-38.

• The observation density is smoother — longitudinal ribbing
effect is lessened (compare the observation density all-sky
image of the 2.5-year case to that of the 5-year case).

• All errors fall well within the 50 µas or µas/yr mission re-
quirements.

• Position in latitude and both proper motion components are
entirely less than 25 µas or µas/yr.

• The polar cap parallax feature is at about 21 µas.

• Results from a 5-year mission (45 degrees) are shown in Ta-
ble 5.  They agree with the expected  dependence fort−1/2

position and parallax and  for proper motion. t−3/2

17.213.513.69pm-latitude

24.516.517.17.3pm-longitude

22.519.219.215.2latitude

33.623.523.711longitude

37.225.223.216.5parallax

3,7971,7091,6001,009counts

maxavgmedmin

Table 5
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55.641.341.128.953.638.938.727.548.936.336.226pm-latitude

76.849.850.921.273.246.947.92067.643.844.918.9pm-longitude

3929.629.520.237.827.927.819.133.226.12617.9latitude

54.436.137.116.451.5343515.447.431.832.714.5longitude

5838.335.925.65536.133.823.450.833.831.622.4parallax

1,7507607183771,9598548084302,226977924505counts

maxavgmedminmaxavgmedminmaxavgmedmin

45 minutes40 minutes35 minutes

Table 4
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Figure 35 — Observation density of a 2.5 year mission. Figure 36 — Observation density of a 5 year mission.

Figure 37 — Histograms for a 5 year mission.
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Figure 38 — Cumulative histograms for a 5 year mission.

10 15 20 25 30 35

σ(λ) (µas)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e 

fr
ac

tio
n

σπ

σ(µβ) σ(µλ)

σβ σλ

Figure 39 — Observation density of the Hipparcos mission (for fun).


